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Abstract. We performed an extensive numerical study of pattern formation scenarios in the two-
dimensional Gray-Scott reaction-diffusion model. We concentrated on the parameter region in which there
exists a strong separation of length and/or time scales. We found that the static one-dimensional au-
tosolitons (stripes) break up into two-dimensional radially-symmetric autosolitons (spots). The traveling
one-dimensional autosolitons (wave fronts) can be stable or undergo breakup. The static two-dimensional
radially-symmetric autosolitons may break up and self-replicate leading to the formation of space-filling
patterns of spots, wave fronts, or spatio-temporal chaos due to the competition of self-replication and
annihilation of spots upon collision.

PACS. 47.54.+r Pattern selection; pattern formation – 82.20.-w Chemical kinetics and dynamics –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Self-organization and pattern formation in nonequilib-
rium systems are among the most fascinating phenom-
ena in nonlinear physics [1–11]. Pattern formation is ob-
served in various physical systems including fluids, gas and
electron-hole plasmas, various semiconductor, supercon-
ductor and gas-discharge structures, some ferroelectric,
magnetic and optical media; combustion systems (see, for
example, [5, 9–14]), as well as many chemical and biolog-
ical systems (see, for example, [1–7,15]).

Self-organization is often associated with the destabi-
lization of the uniform state of the system [1–5, 10, 11].
At the same time, when the uniform state of the system
is stable, one can excite large-amplitude patterns, includ-
ing autosolitons (ASs) — self-sustained solitary inhomo-
geneous states, by applying a sufficiently strong stimu-
lus [8–11, 16–19]. Autosolitons are elementary objects in
open dissipative systems away from equilibrium. They
share the properties of both solitons and traveling waves
(or autowaves, as they are also referred to [2,6]). They are
similar to solitons since they are localized objects whose
existence is due to the nonlinearities of the system. On
the other hand, from the physical point of view they are
essentially different from solitons in the fact that they are
dissipative structures, that is, they are self-sustained ob-
jects which form in strongly dissipative systems as a re-
sult of the balance between the dissipation and pumping
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of energy or matter. This is the reason why, in contrast to
solitons, their properties are independent of the initial con-
ditions and are determined primarily by the nonlinearities
of the system [8–11]. ASs can be static, pulsating, or trav-
eling. As a result of their various instabilities, these sim-
plest localized patterns can spontaneously transform into
complex space-filling static or dynamic patterns, includ-
ing complex pulsating and traveling patterns, or spatio-
temporal chaos [8–14, 18–33]. Thus, it is the destabiliza-
tion of the ASs that is the main source of self-organization
in nonequilibrium systems with the stable homogeneous
state.

A classical example of a system of this kind is the Gray-
Scott model of an autocatalytic chemical reaction [34]. Re-
cently, we showed that this model is capable of supporting
various kinds of ASs [35–37] (see also [38–40]). A charac-
teristic feature of these autosolitons is that they have the
shape of narrow spikes in the distribution of the activator
substance. Under certain conditions, they undergo insta-
bilities that should lead to the formation of more complex
patterns [35,38,41].

In this paper, we perform a numerical study of the
spike patterns in the Gray-Scott model in two dimensions.
We will study the parameter region in which there exists
a strong separation between the length and/or time scales
of the activator and the inhibitor. We will study the initial
formation of the spike ASs and investigate their transfor-
mations into more complex patterns. The outline of our
paper is as follows. In Section 2 we introduce the model
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we will study, in Section 3 we present the results of our nu-
merical simulations, and in Section 4 we give the summary
of our work and draw conclusions.

2 The model

The Gray-Scott model describes the kinetics of a sim-
ple autocatalytic reaction in an unstirred flow reactor.
The reactor is a narrow space between two porous walls.
Substance Y whose concentration is kept fixed outside of
the reactor is supplied through the walls into the reac-
tor with the rate k0 and the products of the reaction are
removed from the reactor with the same rate. Inside the
reactor Y undergoes the reaction involving an intermedi-
ate species X :

2X + Y
k1→ 3X, (1)

X
k2→ inert. (2)

The first reaction is a cubic autocatalytic reaction result-
ing in self-production of species X ; therefore, X is the ac-
tivator species. On the other hand, the production of X is
controlled by species Y , so Y is the inhibitor species. The
equations of chemical kinetics which describe the spatio-
temporal variations of the concentrations of X and Y in
the reactor and take into account the supply and the re-
moval of the substances through the porous walls take the
following form [34]:

∂X

∂t
= −(k0 + k2)X + k1X

2Y +DX∆X, (3)

∂Y

∂t
= k0(Y0 − Y )− k1X

2Y +DY∆Y, (4)

where nowX and Y are the concentrations of the activator
and the inhibitor species, respectively, Y0 is the concen-
tration of Y in the reservoir, ∆ is the two-dimensional
Laplacian, and DX and DY are the diffusion coefficients
of X and Y .

In order to be able to understand various pattern for-
mation phenomena in a system of this kind, it is crucial
to introduce the variables and the time and length scales
that truly represent the physical processes acting in the
system. The first and the most important is the choice
of the characteristic time scales. These are primarily dic-
tated by the time constants of the dissipation processes.
For Y this is the supply and the removal with the rate k0,
whereas for X this is the removal from the system and the
decay via the second reaction with the total rate k0 + k2.
A natural way to introduce the dimensionless inhibitor
concentration is to scale it with Y0. Since we want to fix
the time scale of the variation of the inhibitor (with the
fixed activator), we will rescale X in such a way that the
reaction term in equation (4) will generate the same time
scale as the dissipative term. This leads to the following
dimensionless quantities:

θ = X/X0, η = Y/Y0, X0 =
(
k0

k1

)1/2

· (5)

The characteristic time and length scales for these quan-
tities are

τθ = (k0 + k2)−1
, τη = k−1

0 , (6)

l = (DXτθ)
1/2 , L = (DY τη)1/2 . (7)

Naturally, one should require positivity of θ and η.
Let us introduce the dimensionless parameters ε = l/L,

α = τθ/τη, and A:

ε =

√
DXk0

(k0 + k2)DY
, (8)

α =
k0

k0 + k2
(9)

A =
Y0k

1/2
0 k

1/2
1

(k0 + k2)
· (10)

The parameter A is the dimensionless strength of the
activation process, that is, it describes the degree of de-
viation of the system from thermal equilibrium. Then,
equations (3) and (4) can be rewritten in the following
dimensionless form

α
∂θ

∂t
= ε2∆θ +Aθ2η − θ, (11)

∂η

∂t
= ∆η − θ2η + 1− η, (12)

provided that length and time are measured in the units
of L and τη, respectively. We will assume that the problem
is defined on the sufficiently large finite domain with zero
flux boundary conditions. Notice that the kinetic model
used to arrive at equations (11) and (12) imposes a re-
striction α ≤ 1 (see Eq. (6)). For the sake of generality, in
the following we will allow α to take arbitrary values.

According to the general qualitative theory of ASs [11],
the types of the ASs realized in a system of this kind
are mainly determined by the values of ε and α and the
shape of the nullclines of equations (11) and (12). These
nullclines are shown in Figure 1. From this figure one can
see that the nullcline of the equation for the activator
is Λ-shaped [11]. This means that spike patterns can be
realized in this system [11].

One can easily check that for 0 < A < 2 there is only
one stationary homogeneous state θ = θh and η = ηh:

θh = 0, ηh = 1, (13)

whereas for A > 2 two extra stationary homogeneous
states exist in the model

θh2,3 =
A∓
√
A2 − 4
2

, ηh2,3 =
A±
√
A2 − 4

2A
· (14)

According to the general qualitative theory of ASs [11],
pattern formation in systems of this kind is possible only
when either ε . 1 and/or α . 1, so ε and α are in fact the
natural small parameters of the model. Indeed, in the op-
posite case ε� 1 and α� 1 the dynamics of the inhibitor
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Fig. 1. The nullclines of equations (11) and (12) for (a) A = 1 and (b) A = 3.

becomes slaved to the activator, so we get a local relation-
ship η = 1

1+θ2 on the time and length scale of variation
of the activator (see Eq. (12)). Substituting this back to
equation (11) and rescaling length and time with ε and α,
respectively, we obtain an effective equation for θ

∂θ

∂t
= ∆θ +

Aθ2

1 + θ2
− θ. (15)

This equation possesses a simple variational structure

∂θ

∂t
= −δF

δθ
, (16)

F =
∫

ddx
(

(∇θ)2

2
−Aθ +A arctan θ +

θ2

2

)
· (17)

For A < 2 the functional F has a unique global minimum
at θ = θh = 0, so any initial condition will relax to the
homogeneous state θh. For A > 2 there are two stable
homogeneous states θ = θh and θ = θh3 (see above), so it is
possible to have waves of switching from one homogeneous
state to the other [5]. It is easily checked that for 2 <
A < 2.18 the dominant homogeneous state is θh, while for
A > 2.18 the dominant homogeneous state is θh3.

For ε � 1 or α � 1 the homogeneous state θ = θh2,
η = ηh2 is always unstable. For ε � 1 the homogeneous
state θ = θh3, η = ηh3 is unstable with respect to the
Turing instability if A < 0.41ε−1. For α� 1 it is unstable
with respect to the homogeneous oscillations (Hopf bifur-
cation) if 0.41α−1/2 < A < α−1/2, or it is an unstable
node if A < 0.41α−1/2. On the other hand, the homoge-
neous state θ = θh, η = ηh is stable for all values of the
system’s parameters. The latter is simple to understand:
in order for the reaction to begin there has to be at least
some amount of the activator substance put in at the start.
Equivalently, the fact that the homogeneous state in equa-
tion (13) is stable for all values of the parameter A (for
an arbitrary deviation from thermal equilibrium) is the
consequence of the degeneracy (the presence of two sepa-
rate branches, see Fig. 1) of the nullcline of equation (11).
Thus, the self-organization associated with the Turing in-
stability of the homogeneous state θh = 0 and ηh = 1 is

not realized in the Gray-Scott model. In such a stable ho-
mogeneous system any inhomogeneous pattern, including
the ASs, can only be excited by a sufficiently strong ex-
ternal stimulus. In turn, self-organization will occur as a
result of the instabilities of the large-amplitude patterns
already present in the system.

To simulate equations (11) and (12) we used a simple
explicit second-order scheme. In order to resolve the de-
tails of the shape of the spike, a sufficiently small spatial
discretization step was needed. It was found that for the
parameters used the step ∆x = 0.25ε gave the solutions
with the accuracy of a few per cent. The stiffness of the
equations at small ε or α makes the simulations rather
time consuming, so the simulations were done on a mas-
sively parallel supercomputer (SGI-Cray Origin 2000). A
typical running time for the simulations shown in the pa-
per is about 1 hour on 16 processors.

3 Pattern formations scenarios
in two dimensions

Recently, we performed an extensive asymptotic analy-
sis of the spike ASs in the Gray-Scott model with ε � 1
and/or α� 1 [35–37]. We identified different types of ASs
and studied their stability [35–37, 41]. We found that at
certain values of the parameters these ASs may undergo
instabilities that should lead to the formation of more
complex space-filling patterns. Here we present the results
of the numerical simulations of the two-dimensional Gray-
Scott model subject to localized stimuli that lead to the
formation and destabilization of the ASs.

3.1 Granulation of the one-dimensional static spike
autosoliton

According to the asymptotic theory, in two dimensions the
static spike AS in the form of a stripe are unstable with
respect to the corrugation instability with the length scale
of order ε in the whole region of its existence [35,41]. The
growth of such a short-wave fluctuation should lead to the
granulation of the stripe into small spots of size of order ε.
To check that and the effect of curvature, we chose the
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t = 33t = 3.80t = 1.80t = 0.15

Fig. 2. Granulation of a stripe. Results of the numerical solution of equations (11) and (12) with ε = 0.05, α = 0.5, and A = 2.
The system is 2.5× 2.5. The shades of gray show the distribution of η. The spots show the regions where θ > 10.

t = 4.1 t = 10

t = 20 t = 30 t = 50

t = 1.2

Fig. 3. Self-replication of spots in two dimensions. Results of the numerical solution of equations (11) and (12) with ε = 0.05,
α = 0.5, and A = 2. The system is 5 × 5. The shades of gray show the distribution of η. The spots show the regions where
θ > 10.

initial condition in the form of a slightly wriggled stripe.
Figure 2 shows this simulation with ε = 0.05, α = 0.5
and A = 2. One can see that the stripe indeed granulates
to spots of size of order ε which then go away from each
other until they become uniformly distributed across the
system. The granulation initiates in the regions of high
curvature of the stripe. Note that the self-replication of
spots may occur during this process (see below).

3.2 Properties of the radially-symmetric static spike
autosoliton

In [36], we asymptotically constructed the solutions in
the form of the static radially-symmetric spike ASs (see
also [40]). Our numerical simulations show that for ε� 1
and α & 1 a localized stimulus applied to the system at
t = 0 evolves into a stable static radially-symmetric spike
AS in a relatively narrow range of values of A. Specifically,
at ε = 0.05 and sufficiently large values of α this happens
at 0.38 < A < 0.65. The amplitude of the static radially-
symmetric spike AS is large in the entire range of A in
which it exists. When α becomes sufficiently small, this

region becomes even narrower since the AS becomes un-
stable with respect to the pulsations at sufficiently small
A (cf. [35, 41]). If this is the case, an initial stimulus may
produce a localized pulsating state close to a radially-
symmetric AS, which after several pulsations will collapse.
When the value of α becomes smaller than some value αc,
the static radially-symmetric AS becomes unstable for all
values of A and can no longer be excited. For ε = 0.05 we
found that αc = 0.014 = 5.6ε2.

3.3 Self-replication of the static radially-symmetric
autosoliton

In [35, 41] we showed that when α & 1 and the value
of A sufficiently large, the static radially-symmetric AS
undergoes an instability with respect to a non radially-
symmetric fluctuation. Our simulations confirm this pre-
diction. The instability results in splitting and self-
replication of the AS. For ε = 0.05 and sufficiently large α
the static radially-symmetric spike AS becomes unstable
and self-replicates at A ≥ 0.7. Such a process for ε = 0.05,
α = 0.5, and A = 2 is shown in Figure 3. From this fig-
ure one can see that the initial condition in the form of
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Fig. 4. Distribution of θ in the simulation of Figure 3 at t = 30.

t = 0.78 t = 1.25t = 0.08

t = 1.90 t = 2.32 t = 2.44 t = 3.05

t = 0.36

Fig. 5. Splitting as a result of the formation and the breakdown of a quasi one-dimensional wave. Results of the numerical
solution of equations (11) and (12) with ε = 0.05, α = 0.1, and A = 3. The system is 5 × 5. The shades of gray show the
distribution of η. The spots show the regions where θ > 10.

a rectangle of size ∼ ε splits into four (which is due to
the rectangular shape of the initial condition and the fact
that the value of A is well above the instability thresh-
old), and then the newborn spots go on splitting. In the
end the system gets filled with an irregular arrangement of
spots, with the characteristic distance between the spots
much less than 1. We would like to emphasize that the
patterns observed in our simulations are essentially dif-
ferent from the domain patterns that form in systems of
FitzHugh-Nagumo type, in which spot replication is also
observed [20–24]. The distributions of the activator in our
simulations consist of small spots instead of the domains
with sharp interfaces. In the spots its distribution is close
to that in the radially-symmetric static spike AS. This is

illustrated in Figure 4 which shows the distribution of θ
at t = 30 in Figure 3. When the value of α becomes small,
the dynamics of splitting changes significantly. Figure 5
shows the evolution of the system with ε = 0.05, α = 0.1,
A = 3, and a localized initial condition. In this case the
pieces that form after splitting of an initial spot can go a
greater distance apart and become more elongated than
in Figure 3 (where α ∼ 1). The state that forms here is
close to a torn-up quasi one-dimensional wave of width
of order 1. This is natural to expect since, as we showed
in [35,37], for these values of the parameters the traveling
spike ASs may be realized in the system. In this case the
formation of new spots occurs as a result of their pinching
off the tips of the quasi one-dimensional wave pieces, that
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Fig. 6. Distribution of θ in the simulation of Figure 5 at t = 2.44.

t = 1.46
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t = 0.83

Fig. 7. Formation of spatio-temporal chaos. Results of the numerical solution of equations (11) and (12) with ε = 0.1, α = 0.04,
and A = 1. The system is 10 × 10. The shades of gray show the distribution of η. The spots show the regions where θ > 5.

is, they sort of drip from them. This process is illustrated
in Figure 6 which shows the distribution of θ at t = 2.44
in Figure 5. The spots that drip from the wave pieces can
further transform into quasi one-dimensional waves which
in turn break up. As a result, the system becomes filled
with a stable stationary pattern of spots, just as in the
case of large α (see the last in Fig. 5).

3.4 Spatio-temporal chaos

For small enough values ofα andA we were able to observe
spatio-temporal chaos. Figure 7 shows the development of

a chaotic pattern at ε = 0.1, α = 0.04, and A = 1. This
pattern does not transform to a stationary pattern of spots
even for very long simulation times (t > 100). The stochas-
tization of the pattern is caused by random splitting of
spots and the disappearance of some of the spots due to
their annihilation upon collision with the bigger spots. Ac-
cording to our asymptotic theory [35,41], we would expect
that these effects will be most pronounced when the static
radially-symmetric AS is close to the instabilities with re-
spect to the pulsations and the onset of the traveling mo-
tion (when α ∼ ε2), and is close to the instability with
respect to splitting. Notice that such chaotic patterns are
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t = 0.57t = 0

t = 0 t = 0.37

b)
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t = 0.11 t = 0.22

t = 0.29t = 0.02

Fig. 8. Propagation of waves in the Gray-Scott model. Results of the numerical solution of equations (11) and (12) with (a)
ε = 0.2, α = 0.05, and A = 1.5; (b) ε = 0.1, α = 0.05, A = 1.5. In (a) the system is 10 × 10; in (b) the system is 5 × 5. The
shades of gray show the distribution of η. The spots show the regions where θ > 10.

also observed in semiconductor structures [12], combus-
tion systems [14], and chemical systems [15].

3.5 Radially diverging waves

For larger values of A and sufficiently small α an initially
localized spot transforms into a circular stripe of growing
radius (Fig. 8). When α is very small, this wave does not
tear up and disappears at the system’s boundary (Fig. 8a).
When, on the other hand, α is not very small, the wave
rebounds from the boundary and parts of it annihilate, so
at some moment it tears up (Fig. 8b). The tips of this wave
get repelled from the boundary, so the wave propagates
across the system until it annihilates upon collision with
the boundary at its opposite side.

4 Conclusion

Let us now summarize our observations of the pattern for-
mation scenarios in the two-dimensional Gray-Scott model
with ε� 1 and/or α� 1, subject to a localized stimulus.
As was emphasized in Section 2, a special feature of the
Gray-Scott model is the fact that in it the homogeneous
state θh = 0, ηh = 1 is stable for all values of the param-
eters. However, in such a stable homogeneous system it
is possible to excite various steady inhomogeneous states,
including self-sustained solitary inhomogeneous states, au-
tosolitons (ASs), by applying a sufficiently strong external
stimulus. The formation of these inhomogeneous states is
due to self-production of substance X (the activator) con-
trolled by substance Y (the inhibitor). The properties of
the patterns are determined by only three parameters: ε,
α, and A. The parameters ε = l/L and α = τθ/τη are the
ratios of the characteristic length and time scales of the
activator and the inhibitor, respectively, and the control

parameter A determines the degree of deviation of the sys-
tem from equilibrium since it is proportional to the rate
of supply of substance Y , which plays the role of “fuel”
for the reaction in equation (1). We emphasize that for
the same values of the system’s parameters it is possible
to excite different patterns which will be stable in cer-
tain ranges of the parameters ε, α, and A by choosing the
form of the stimulus. At the stability margin the patterns
spontaneously disappear or transform into the patterns of
different kinds.

As follows from the general qualitative theory of the
patterns in reaction-diffusion systems, the necessary con-
dition for the existence of the persistent patterns of any
kind is smallness of the parameters ε and/or α [9–11]. De-
pending on the values of ε and α, one can distinguish three
different cases.

The first case corresponds to ε� 1 and α & 1. As was
expected from the general qualitative theory [9–11], for
these values of ε and α one can excite only the static spike
ASs whose amplitude θmax � 1. In the two-dimensional
Gray-Scott model with ε� 1 and α & 1 one can excite the
radially-symmetric static spike AS of size (in the dimen-
sional units) of order l (Sect. 3). The range of values of A
for which this AS exists is relatively narrow for ε � 1.
When the value of A is decreased, the static radially-
symmetric spike AS, having large amplitude θmax � 1,
abruptly disappears. The range of A at which the radially-
symmetric static spike AS exist becomes even narrower for
small α when the AS becomes unstable with respect to the
pulsations (Sect. 3). On the other hand, when the value
of A is increased, the static radially-symmetric spike AS
looses stability with respect to the radially non-symmetric
fluctuations. As a result of the development of such fluc-
tuations the AS splits into two, which then split in turn
(self-replicate) until the system gets filled with a multispot
pattern (Fig. 3). We would like to emphasize that for ε� 1
a spot (a state close to the radially-symmetric AS) is the
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dominant morphology, so that any localized initial state
such as a stripe or a square first granulates into spots,
and the evolution of the system is then governed by self-
replication of these spots (Figs. 2, 3). Let us note that
in FitzHugh-Nagumo type systems one sees complex pat-
terns in the form of wriggling stripes, connected and dis-
connected labyrinthine patterns [20–24], which are also ob-
served in chemical experiments [15]. These patterns do not
form from a localized stimulus in the Gray-Scott model
with ε � 1. Note, however, that when ε ∼ 1, the Gray-
Scott model starts behaving like a FitzHugh-Nagumo type
system (see below), so for these values of ε such patterns
can in fact be excited [26].

In the second case we have α � 1 and ε & 1. In this
case one can excite different kinds of self-sustained waves
(autowaves) which in the cross-section have the form of
the narrow spikes of size roughly l, the amplitude θmax �
1 and the speed c � l/τθ [35, 37]. Note that this type
of waves is also realized in the Brusselator [44]. In two
dimensions, besides the plane waves corresponding to the
one-dimensional traveling spike ASs, one can excite the
radially diverging waves (Fig. 8) and the steadily rotating
spiral wave [45].

In the third case, when both ε and α are small, the be-
havior of the patterns in the Gray-Scott model is most di-
verse. The radially diverging traveling waves may undergo
a transversal breakup leading to the formation of the sta-
tionary multispot patterns (Fig. 5). Also, when the values
of α and A are small enough, one can excite the chaotic
patterns (Fig. 7). The chaotic behavior of the latter is due
to the random creation of new spots as a result of self-
replication and annihilation of some of the spots as they
collide with each other. This kind of spatio-temporal chaos
is observed in chemical experiments [15] and is not unlike
the one realized in FitzHugh-Nagumo type systems [22].

Let us comment on the relationship between the nu-
merical simulations of the two-dimensional Gray-Scott
model performed by Pearson in [26] and those of Sec-
tion 3 performed by us. Pearson uses a different non-
dimensionalization of the Gray-Scott model, which has the
following correspondence with our parameters [26]:

ε2 =
DvF

Du(F + k)
, α =

F

F + k
, A =

√
F

F + k
· (18)

It is not difficult to see that for the simulations of Pearson
ε ' 0.45, α ' 0.4, and A ' 2, so his choice of the parame-
ters corresponds to ε ∼ 1 and α ∼ ε2 ∼ 1. This is different
from our simulations for which ε� 1 and/or α� 1. Note
that the stationary patterns in the Gray-Scott model with
ε ∼ 1 should actually resemble those forming in FitzHugh-
Nagumo type systems [22]. Indeed, if one introduces the
new variables θ̃ = θ

A and η̃ = η+ ε2

A θ, after simple algebra
one can write equations (11) and (12) as

α
∂θ̃

∂t
= ε2∆θ̃ +A2θ̃2η̃ − ε2A2θ̃3 − θ̃ (19)

∂η̃

∂t
= ∆η̃ + 1− η̃ − (1− ε2)θ̃ − (α− ε2)

∂θ̃

∂t
· (20)

From equations (19) and (20) one can see that for ε ∼ 1
the nullcline of the equation for θ̃ is actually cubic-like,
and the coupling between θ̃ and η̃ becomes linear, so the
stationary patterns in this case should in fact look like
those forming in FitzHugh-Nagumo type systems [22].
This is the reason why Pearson observed the stationary
labyrinthine patterns, while in our simulations any stripe-
like pattern always granulates into spots. Also, the col-
lective oscillations of the space-filling patterns observed
by Pearson are similar to the collective oscillations of the
domain patterns in FitzHugh-Nagumo type systems [43].
Note that Pearson did not see the spiral waves observed
by us in [45] because in his simulations α ∼ ε2 and the
spirals break up as they form. We do not see any phase
turbulence since in our simulations the system is far away
from the Hopf bifurcation of the homogeneous state θh3,
ηh3. The rest of the patterns observed in [26] are similar
to those observed by us.

We would like to acknowledge the computational support from
the Center for Computational Science of Boston University.
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